## THEORY OF METAL MACHINING

- Overview of Machining Technology
- Theory of Chip Formation in Metal Machining
- Force Relationships and the Merchant Equation
- Power and Energy Relationships in Machining
- Cutting Temperature

## **Material Removal Processes**

A family of shaping operations, the common feature of which is removal of material from a starting workpart so the remaining part has the desired shape

- Categories:
  - Machining material removal by a sharp cutting tool, e.g., turning, milling, drilling
  - Abrasive processes material removal by hard, abrasive particles, e.g., grinding
  - Nontraditional processes various energy forms other than sharp cutting tool to remove material

## Machining

# Cutting action involves shear deformation of work material to form a chip

• As chip is removed, a new surface is exposed



Figure 21.2 - (a) A cross-sectional view of the machining process, (b) tool with negative rake angle; compare with positive rake angle in (a)

## Why Machining is Important

- Variety of work materials can be machined
  - Most frequently applied to metals
- Variety of part shapes and special geometry features possible, such as:
  - Screw threads
  - Accurate round holes
  - Very straight edges and surfaces
- Good dimensional accuracy and surface finish

## **Disadvantages with Machining**

- Wasteful of material
  - Chips generated in machining are wasted material, at least in the unit operation
- Time consuming
  - A machining operation generally takes more time to shape a given part than alternative shaping processes, such as casting, powder metallurgy, or forming

## Machining in the Manufacturing Sequence

- Generally performed after other manufacturing processes, such as casting, forging, and bar drawing
  - Other processes create the general shape of the starting workpart
  - Machining provides the final shape, dimensions, finish, and special geometric details that other processes cannot create

## **Machining Operations**

- Most important machining operations:
  - Turning
  - Drilling
  - Milling
- Other machining operations:
  - Shaping and planing
  - Broaching
  - Sawing

## Turning

Single point cutting tool removes material from a rotating workpiece to form a cylindrical shape



#### Figure 21.3 (a) turning

## Drilling

# Used to create a round hole, usually by means of a rotating tool (drill bit) that has two cutting edges



Figure 21.3 - The three most common types of machining process: (b) drilling

#### Milling

Rotating multiple-cutting-edge tool is moved slowly relative to work to generate plane or straight surface

• Two forms: peripheral milling and face milling



Figure 21.3 - (c) peripheral milling, and (d) face milling

## **Cutting Tool Classification**

- 1. Single-Point Tools
  - One cutting edge
  - *Turning* uses single point tools
  - Point is usually rounded to form a nose radius
- 2. Multiple Cutting Edge Tools
  - More than one cutting edge
  - Motion relative to work usually achieved by rotating
  - Drilling and milling use rotating multiple cutting edge tools.



Figure 21.4 - (a) A single-point tool showing rake face, flank, and tool point; and (b) a helical milling cutter, representative of tools with multiple cutting edges

## Cutting Conditions in Machining

- The three dimensions of a machining process:
  - Cutting speed v primary motion
  - Feed *f* secondary motion
  - Depth of cut *d* penetration of tool below original work surface
- For certain operations, material removal rate can be found as

MRR = v f d

where v = cutting speed; f = feed; d = depth of cut

## **Cutting Conditions for Turning**



Figure 21.5 - Cutting speed, feed, and depth of cut for a turning operation

## Roughing vs. Finishing in Machining

In production, several roughing cuts are usually taken on the part, followed by one or two finishing cuts

- Roughing removes large amounts of material from the starting workpart
  - Creates shape close to desired geometry, but leaves some material for finish cutting
  - High feeds and depths, low speeds
- Finishing completes part geometry
  - Achieves final dimensions, tolerances, and finish
  - Low feeds and depths, high cutting speeds

## **Machine Tools**

A power-driven machine that performs a machining operation, including grinding

- Functions in machining:
  - Holds workpart
  - Positions tool relative to work
  - Provides power at speed, feed, and depth that have been set
- The term is also applied to machines that perform metal forming operations

## **Orthogonal Cutting Model**

A simplified 2-D model of machining that describes the mechanics of machining fairly accurately



Figure 21.6 - Orthogonal cutting: (a) as a three-dimensional process

## **Chip Thickness Ratio**

$$r = \frac{t_o}{t_c}$$

where r = chip thickness ratio;  $t_o =$  thickness of the chip prior to chip formation; and  $t_c =$  chip thickness after separation

 Chip thickness after cut is always greater than before, so chip ratio is always less than 1.0

## **Determining Shear Plane Angle**

 Based on the geometric parameters of the orthogonal model, the shear plane angle φ can be determined as:

$$\tan\phi = \frac{r\cos\alpha}{1 - r\sin\alpha}$$

where *r* = chip ratio, and  $\alpha$  = rake angle



Figure 21.7 - Shear strain during chip formation: (a) chip formation depicted as a series of parallel plates sliding relative to each other, (b) one of the plates isolated to show shear strain, and (c) shear strain triangle used to derive strain equation

## **Shear Strain**

Shear strain in machining can be computed from the following equation, based on the preceding parallel plate model:

$$\gamma = \tan(\phi - \alpha) + \cot \phi$$

where  $\gamma =$  shear strain,  $\phi =$  shear plane angle, and  $\alpha =$  rake angle of cutting tool



Figure 21.8 - More realistic view of chip formation, showing shear zone rather than shear plane. Also shown is the secondary shear zone resulting from tool-chip friction

## Four Basic Types of Chip in Machining

- 1. Discontinuous chip
- 2. Continuous chip
- 3. Continuous chip with Built-up Edge (BUE)
- 4. Serrated chip

## **Segmented Chip**

- Brittle work materials (e.g., cast irons)
- Low cutting speeds
- Large feed and depth of cut
- High tool-chip friction

Figure 21.9 - Four types of chip formation in metal cutting: (a) segmented



## **Continuous Chip**

- Ductile work materials (e.g., low carbon steel)
- High cutting speeds
- Small feeds and depths
- Sharp cutting edge on the tool
- Low tool-chip friction

Figure 21.9 - Four types of chip formation in metal cutting: (b) continuous



## **Continuous with BUE**

- Ductile materials
- Low-to-medium cutting speeds
- Tool-chip friction causes portions of chip to adhere to rake face
- BUE formation is cyclical; it forms, then breaks off

Figure 21.9 - Four types of chip formation in metal cutting: (c) continuous with built-up edge



## **Serrated Chip**

- Semicontinuous sawtooth appearance
- Cyclical chip formation of alternating high shear strain then low shear strain
- Most closely associated with difficult-to-machine metals at high cutting speeds

Figure 21.9 - Four types of chip formation in metal cutting: (d) serrated



## Forces Acting on Chip

- Friction force F and Normal force to friction N
- Shear force  $\overline{F_s}$  and Normal force to shear  $\overline{F_n}$

Figure 21.10 -

Forces in metal cutting: (a) forces acting on the chip in orthogonal cutting



## **Resultant Forces**

- Vector addition of *F* and *N* = resultant *R*
- Vector addition of  $F_s$  and  $F_n$  = resultant R'
- Forces acting on the chip must be in balance:
  - -R' must be equal in magnitude to R
  - -R' must be opposite in direction to R
  - -R' must be collinear with R

## **Coefficient of Friction**

## Coefficient of friction between tool and chip:

 $\mu = \frac{F}{N}$ 

Friction angle related to coefficient of friction as follows:

 $\mu = \tan \beta$ 

## **Shear Stress**

#### Shear stress acting along the shear plane:



where  $A_s$  = area of the shear plane

$$A_{\rm s} = \frac{t_o w}{\sin \phi}$$

Shear stress = shear strength of work material during cutting

## Cutting Force and Thrust Force

- Forces F, N,  $F_s$ , and  $F_n$  cannot be directly measured
- Forces acting on the tool that can be measured:
  - Cutting force  $F_c$  and Thrust force  $F_t$

Figure 21.10 - Forces in metal cutting: (b) forces acting on the tool that can be measured



## **Forces in Metal Cutting**

 Equations can be derived to relate the forces that cannot be measured to the forces that can be measured:

 $F = F_c \sin \alpha + F_t \cos \alpha$  $N = F_c \cos \alpha - F_t \sin \alpha$  $F_s = F_c \cos \phi - F_t \sin \phi$  $F_n = F_c \sin \phi + F_t \cos \phi$ 

 Based on these calculated force, shear stress and coefficient of friction can be determined

#### The Merchant Equation

 Of all the possible angles at which shear deformation could occur, the work material will select a shear plane angle φ which minimizes energy, given by

$$\phi = 45 + \frac{\alpha}{2} - \frac{\beta}{2}$$

- Derived by Eugene Merchant
- Based on orthogonal cutting, but validity extends to 3-D machining

## What the Merchant Equation Tells Us

$$\phi = 45 + \frac{\alpha}{2} - \frac{\beta}{2}$$

- To increase shear plane angle
  - Increase the rake angle
  - Reduce the friction angle (or coefficient of friction)

- Higher shear plane angle means smaller shear plane which means lower shear force
- Result: lower cutting forces, power, temperature, all of which mean easier machining



Figure 21.12 - Effect of shear plane angle $\phi$ : (a) higher  $\phi$  with a resulting lower shear plane area; (b) smaller  $\phi$  with a corresponding larger shear plane area. Note that the rake angle is larger in (a), which tends to increase shear angle according to the Merchant equation

## Power and Energy Relationships

• A machining operation requires power The power to perform machining can be computed from:  $P_c = F_c v$ where  $P_c$  = cutting power;  $F_c$  = cutting force; and v = cutting speed

## Power and Energy Relationships

In U.S. customary units, power is traditional expressed as horsepower (dividing ft-lb/min by 33,000)

 $HP_c = \frac{F_c v}{33,000}$ 

where  $HP_c$  = cutting horsepower, hp

## Power and Energy Relationships

Gross power to operate the machine tool  $P_g$  or  $HP_g$  is given by

$$P_g = \frac{P_c}{E}$$
 or  $HP_g = \frac{HP_c}{E}$ 

where E = mechanical efficiency of machine tool

• Typical *E* for machine tools =  $\sim 90\%$ 

## Unit Power in Machining

- Useful to convert power into power per unit volume rate of metal cut
- Called the unit power,  $P_u$  or unit horsepower,  $HP_u$

$$P_u = \frac{P_c}{MRR}$$
 or  $HP_u = \frac{HP_c}{MRR}$ 

where *MRR* = material removal rate

## Specific Energy in Machining

Unit power is also known as the specific energy U

$$U = P_u = \frac{P_c}{MRR} = \frac{F_c v}{v t_o w} = \frac{F_c}{t_o w}$$

Units for specific energy are typically N-m/mm<sup>3</sup> or J/mm<sup>3</sup> (in-lb/in<sup>3</sup>)

## **Cutting Temperature**

- Approximately 98% of the energy in machining is converted into heat
- This can cause temperatures to be very high at the tool-chip
- The remaining energy (about 2%) is retained as elastic energy in the chip

## **Cutting Temperature**

- Several analytical methods to calculate cutting temperature
- Method by N. Cook derived from dimensional analysis using experimental data for various work materials

$$T = \frac{0.4U}{\rho C} \left(\frac{vt_o}{K}\right)^{0.333}$$

where T = temperature rise at tool-chip interface; U = specific energy; v = cutting speed;  $t_o$  = chip thickness before cut;  $\rho C$  = volumetric specific heat of work material; K = thermal diffusivity of the work material

## **Cutting Temperature**

- Experimental methods can be used to measure temperatures in machining
- Most frequently used technique is the *tool-chip thermocouple*
- Using this method, K. Trigger determined the speed-temperature relationship to be of the form:

 $T = K v^m$ 

where T = measured tool-chip interface temperature